Star partial order in indefinite inner product spaces
dc.citation.epage | 221 | |
dc.citation.issue | 2 | |
dc.citation.rank | M21 | |
dc.citation.spage | 213 | |
dc.citation.volume | 45 | |
dc.contributor.author | Stanišev, Ivana | |
dc.date.accessioned | 2025-05-09T07:07:04Z | |
dc.date.available | 2025-05-09T07:07:04Z | |
dc.date.issued | 2022 | |
dc.description.abstract | We define the star partial order for matrices in spaces with an indefinite inner product. We also give a characterization of that order in terms of matrices and their Moore-Penrose inverses. Finally, some interesting properties are shown. | |
dc.identifier.doi | 10.2989/16073606.2020.1851310 | |
dc.identifier.issn | 1607-3606 | |
dc.identifier.uri | https://repozitorijum.tfbor.bg.ac.rs/handle/123456789/5964 | |
dc.language.iso | en | |
dc.publisher | Taylor & Francis | |
dc.rights.license | ARR | |
dc.rights.uri | All rights reserved | |
dc.source | Quaestiones Mathematicae | |
dc.subject | Moore-Penrose inverse | |
dc.subject | Indefinite inner product | |
dc.subject | adjoint | |
dc.subject | partial orders | |
dc.subject | star partial orders | |
dc.title | Star partial order in indefinite inner product spaces | |
dc.type | article | |
dc.type.version | publishedVersion |